Photometric clustering of regenerated plants of gladiolus by neural networks and its biological validation

نویسندگان

  • V.S.S. Prasad
  • S. Dutta Gupta
چکیده

Photometric clustering of regenerated plants of gladiolus was described using fuzzy adaptive resonance theory (ART) and the resultant grouping pattern was compared with ART 2, and self-organizing map (SOM) neural network modules. Classical clustering techniques such as hierarchical (HC) and k-means clustering (KM)were also applied to analyze the same data set to evaluate the performance of the artificial neural network (ANN)-based clustering. Regenerated plants were clustered into two groups in varying numbers by ART 2, SOM, HC and KM. With ART 2, 19 of 55 plants were sorted into group ‘0’ and the remaining 36 plants were placed in group ‘1’, whereas; SOM distributed the regenerated plants in the ratio of 28:27. The clustering ratios of HC and KM were 34:21 and 26:29, respectively. However, a refined clustering of regenerated plants into seven groups was observed with Fuzzy ART. There was a similarity in the number of generated clusters between the training and validation data sets indicating the network efficiency. Biological validation of photometric clustering of regenerated plants was also assessed by indexing the corm induction potential of the sorted groups. A significant difference in corm induction potential between the groups was noted only with ART 2. Fuzzy ART-assisted grouping patterns are not conducive to segregate the potential corm producing shoots. ART 2-aided clustering of the regenerated plants appeared to be more promising for selecting group of plants capable of corm development than did other clustering approaches. attention for studies to characterize the in vitro and/or ex vitro

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River

The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007